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ABSTRACT: An analytical model for the isothermal crystallization of fiber reinforced
polymers is presented. The model is based on approximate expressions for the volume
of intersection between a sphere and cylinder. These expressions are used to account for
the effect of the fibers on the overall crystallization process. Expressions for the average
volume of spherulites truncated by the fibers are computed. The crystallization process
is divided into time frames during which specific types of fiber truncations are encoun-
tered. Three different time sequences for the occurrence of the truncations are also
derived according to the fiber volume fraction. The depressing effect of the fibers on the
overall crystallization process is demonstrated with simple examples. © 1998 John Wiley
& Sons, Inc. J Appl Polym Sci 70: 1677–1687, 1998
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INTRODUCTION

In polymer crystallization studies, it is generally
observed that overall crystallization rates mea-
sured on bulk specimens are higher than those
measured from thin films or fiber reinforced poly-
mers. In these cases, the thinness of the film or
the space occupied by the fibers, due to geometric
considerations, reduce the overall rate of crystal-
lization. Several studies were recently presented
on the theoretical treatment of crystallization in
thin films1–4 and direct numerical simulations
were performed to verify the models developed.1–3

Similar numerical studies were performed on fi-
ber-reinforced polymers but without the accompa-
nying analytical studies.5–8 It is therefore the
purpose of this paper to present a theoretical
treatment that explains the effect of the fibers on
the overall crystallization rate.

Although we are concerned with fiber-rein-
forced polymers, it will be seen below that the
main distinction between crystallization occur-
ring in thin films, compared with crystallization
in fiber-reinforced polymers, is due to geomet-
rical considerations. A schematic representa-
tion of crystallization in fiber-reinforced poly-
mers is shown in Figure 1. The top drawing of
Figure 1 shows a crystallization process occur-
ring in a composites with low fiber volume frac-
tion. The bottom drawing of this figure shows a
crystallization process occurring in a polymer
with a high fiber volume fraction. The fibers are
represented by large black circles. It is to be
noted that the spherulites intersect frequently
with the fibers and that the higher the fiber
volume fraction, the more frequent the trunca-
tions (or intersections).

The objective of this work is to develop an an-
alytical model for isothermal crystallization in
semicrystalline polymer composites. An analyti-
cal model, when compared with a numerical
model, has a number of advantages, namely ease
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of use, enhanced understanding of the phenom-
ena, and rapidity in the computations. The
method used for developing the model is based on
the work of the group of Billon and associates1–3

and Escleine and coworkers.9 They extended and
adapted to thin films the work of Evans10 and
Avrami,11–13 and the same approach can be used
to treat crystallization in fiber-reinforced poly-
mers. Schultz4 also recently modified the consti-
tutive equations in a different manner to account
for the thinness of the polymer film, and the same
technique can be also be adapted to treat fiber-
reinforced polymers. Presentation of the model
begins with a brief review of the crystallization in
neat polymers. The approach used in the model
then follows.

GEOMETRICAL APPROACH BASED ON
AVRAMI’S THEORY

During crystallization, at time t, the volume frac-
tion of spherulites growing from a uniform distri-
bution of potential nuclei is given by

a~t! 5 1 2 exp@ 2 a9~t!# (1)

where a9(t) is the “extended” volume fraction.
The concept of extended volume was introduced
by Avrami.11–13 It corresponds to the volume oc-
cupied by spherulites as if they grew uncon-
strained by each other, i.e., without impingement.
It also implies that nuclei can be activated in
already transformed regions (the so-called “phan-
tom” nuclei). The model of Avrami given in eq. (1)
relates crystallization in a real system, where
impingement occurs, to the growth of hypotheti-
cal spherulites growing freely without impinge-
ment. To compute the actual crystallization rate,
it is required to know only the nucleation and
growth characteristics of the spherulites of a par-
ticular polymer system. The extended volume
fraction can then be expressed as

a9~t! 5 E
0

t

ḣ~t!y9~t, t! dt (2)

which is simply the integral of the rate at which
potential nuclei are activated at time t multiplied
by their volume at time t.

Computation of the Extended Volume
for Neat Polymers

A brief review of well-known expressions used for
describing crystallization in polymers is pre-
sented below. As mentioned above, the extended
volume concept corresponds to spherulites that
grow without constraints. In order to compute the
actual crystallization rate, nucleation and growth
characteristics of a polymer must be specified.

Under isothermal conditions, the growth rate of
the spherulites has been found to be constant and
the radius of a spherulite varies linearly with time
for several systems,14 i.e., R(t) 5 Got. Finding an
appropriate nucleation law is more problematic, as
nucleation can be homogeneous, heterogeneous, or
a mixture of both. Nucleation is also characterized
as being thermal or athermal. Homogeneous nucle-
ation is directly linked to thermal nucleation. Het-

Figure 1 Schematic representation of crystallization
in fiber-reinforced polymers (a 5 fiber, b 5 spherulite,
c 5 molten polymer); top schematic corresponds to a
low-fiber volume fraction, bottom figure corresponds to
high-fiber volume fraction.
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erogeneous nucleation, however, can be of either
form, thermal or athermal.15

Avrami12 presented an expression that allows
description of the nucleation process in a general
manner. This expression, which provides the
number of potential nuclei per unit volume at a
given time, is given by

N~t! 5 No exp~ 2 qt! (3)

where No is the initial number of potential nuclei
per unit volume and q is their activation fre-
quency. It is assumed here that the number of
nuclei activated decreases with time.

Equation (3) can be used to model an instanta-
neous nucleation process (often associated with
heterogeneous nucleation) if q tends to infinity, as
well as a homogeneous nucleation process if No is
large and q is small. With eq. (3), the extended
volume for an unfilled polymer is given by

a9~t! 5 qNo E
0

t

y9~t, t!exp@ 2 qt# dt (4)

where y9(t, t) is the volume (without impinge-
ment) at time t for a spherulite that nucleated at
time t. Under isothermal conditions, y9(t, t), is
simply

y9~t, t! 5
4p

3 Go
3~t 2 t!3 (5)

and substituting eq. (5) into eq. (4) gives the well-
known expression

a9~t! 5
8NopGo

3

q3 Sexp~ 2 qt! 2 1

1 qt 2
2 q2t2

2 1
q3t3

6 D (6)

However, if homogeneous nucleation is suspected
to occur, it is simpler to model the process with
the expression

ṅ~t! 5 No (7)

where No is then the steady nucleation rate. The
extended volume is then given by

a9~t! 5 No E
0

t

y9~t, t! dt 5
NopGo

3t4

3 (8)

If heterogeneous nucleation is the dominant
factor, a delta function can be used to represent
the nucleation rate, i.e.,

ṅ~t! 5 Nod~t! (9)

where No is the total number of nuclei. The ex-
tended volume is then given by

a9~t! 5 No E
0

t

d~t!y9~t 2 t! dt (10)

or

a9~t! 5 Noy9~t! 5
4pNoGo

3t3

3 (11)

for instantaneous nucleation. An induction time
period can also be introduced and it then suffices
to use d(t 2 ti), where ti is the induction time
period.

CRYSTALLIZATION RESTRICTED BY FIBERS

In calculating the overall crystallization rate of a
volume limited by fibers we can use Avrami’s
equation, and the average volume fraction occu-
pied by the spherulites must be known. The av-
erage volume must consider the interactions be-
tween the fibers and the growing spherulites, i.e.,
it must account for the truncations caused by the
presence of fibers in the melt because they reduce
the overall crystallization rate by intersecting
with the spherulites. The crystallinity computed
for an infinite volume must therefore be modified
in order to account for the various geometrical
effects. If the fibers are approximated as infinitely
long cylinders, it is possible to correct the ex-
tended volume and account for their effect on the
crystallization process.

Volume of Intersection Between a Cylinder
and a Sphere

Finding an analytical expression for the volume of
intersection for a cylinder with a sphere at an
arbitrary distance from each other in three di-
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mensions is not a trivial problem. An exact ex-
pression, valid in all cases, was presented only a
few years ago by Lamarche and Leroy16 and in-
volves the three standard elliptic integrals. Ap-
proximate expressions were also presented ear-
lier by Gosset and colleagues.17 The approximate
and exact solutions are presented as a function of
b, the distance between the axis of the cylinder
and the center of a sphere. They also involve Rf,
the radius of the fiber, and Rs, the radius of the
spherulite. Both the exact and approximate ex-
pressions are discussed below.

Exact Solution

The exact solution for the volume of a sphere
intersecting with a cylinder is presented for nine
possible cases in ref. 16. These nine cases are
summarized with

~b , Rf, b 5 Rf, b . Rf! ù ~Rs , b 1 Rf,

Rs 5 b 1 Rf, Rs . b 1 Rf!

Of these nine cases, six are of interest in this
work. Three correspond to spherulites nucleating
on the fiber surface and three correspond to nu-
cleation in the melt surrounding the fiber. The
exact mathematical expressions for the volume of
intersection are not reproduced here for the sake
of brevity but can be found in ref. 16.

Approximate Expressions

Approximate expressions are also available for
computing the modified extended volume if it is
assumed that no nucleation occurs on the fiber
itself. The expressions presented in ref. 17 are for
the following three cases:

1. A cylindrical hole of radius Rf is gouged by
the fiber in the spherulite of radius Rs(2 Rf
, Rs).

2. A cylindrical channel is gouged by the fiber
in the spherulite (Rf , Rs).

3. A cylindrical channel of radius Rf is gouged
in the spherulite of radius Rs(Rf . Rs).

Cases 2 and 3 are both associated with a cylin-
drical channel. Different expressions must be
used according to the size of the fiber radius with
respect to the spherulite radius. The three cases
are illustrated in Figure 2.

For each of the three cases considered, the vol-
ume of intersection can be approximated by ref. 17.

V1
i 5 @1 2 ~1 2 m2!3/2#@1 2 ~b/n!2#1/2

V2
i 5

3
4 ~1 2 n!1/2S1 2 b

n D 2

2
1
8

3 S3~1 2 n!1/2

m
2

@1 2 ~1 2 m2!3/2# @1 2 ~1 2 m!2#1/2

m3 D
3 S1 2 b

n D 3

V3
i 5

3
4 ~1 2 n!1/2S1 2 b

n D 2

2
1
8

3 @3~1 2 n!1/2 2 1#S1 2 b

n D 3

where m equals Rf/Rs, n equals Rs/(Rf 1 Rs),
and b equals b/(Rf 1 Rs). V1

i , V2
i and V3

i are all
normalized with respect to 4

3 pRs
3. The superscript

i is used to indicate that these expressions are
for the volumes of intersection. The normalized
volume of a sphere is then given by 1 2 Vk (k
5 1, 2, 3).

The exact and approximate solutions are com-
pared in Figure 3 for three cases. The error intro-

Figure 2 Three cases of interest in the interactions
between spherulites and a fiber. Cases 1, 2, and 3
correspond respectively to a cylindrical hole, a cylindri-
cal channel, and no fiber truncation.
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duced by the approximate solution can be ob-
served to be small for these cases.

Computation of the Average Volumes

The next step in accounting for the presence of
fibers is to compute the average volume ^y& for
each type of truncation for various center-to-cen-
ter distances b. The domain average volume is
computed with

^y& 5
1
V E

V

ydV (12)

where V is the total volume of the domain and y is
the volume of the sphere. In considering the axi-
symmetry of the problem and assuming infinitely
long fibers, this equation reduces to an integral on
the distance from the fiber center, b:

^y& 5
2p

A E
DR

ybdb (13)

where DR is the interval on b that corresponds to
the particular type of truncation being considered
and A is the relevant surface area for a given
interval DR. It is also assumed here that only one
truncation occurs per spherulite.

In view of the unwieldy nature of the exact
solution, we resorted to the approximate expres-
sions of Gosset and coworkers17 to compute the
average volume of the three possible cases. These
expressions are provided in the Appendix. More
than three expressions are found because the lim-
its of integration may change according to the
time interval considered during the crystalliza-
tion process.

Unit Cells

In order to study the interaction between fibers
and spherulites during crystallization in compos-
ites, it suffices to consider a representative vol-
ume of the overall structure, i.e., a unit cell. Pos-
sible unit cells are shown in Figure 4. Each one
corresponds to a specific packing order of the fi-
bers, e.g., triangular, square, Voronoi, or hexago-
nal packing. The unit cell chosen must satisfy two
requirements: it must be sufficiently large to pro-
vide a faithful representation of the average mi-
crostructure, and it must also closely match the
arrangement of the fibers in the polymer.

Each of the cells shown in Figure 4 possesses
only one fiber at its center. These cells will there-
fore be valid as long as only one fiber truncation
occurs per spherulite. If multiple fiber trunca-
tions occur, a larger unit cell that includes several
fibers must be used. Also, the relevance of the
shape of the cell arises in the calculations of the
probabilities of occurrence of each truncation. The
probability of occurrence is related to the respec-
tive area where each truncation is possible.

We consider in this work a unit cell with the
outer boundary represented by a circular cylin-
der. This cell is the simplest case and approxi-
mates a hexagonal packing arrangement of the
fibers.

Computation of the Probabilities

The probability of finding a sphere in a specific
configuration with respect to the cylinder can be
computed for the three cases shown in Figure 2
and the case of an untruncated spherulite. These
probabilities are computed from the ratio of the
areas where each type of spherulite can occur to
the total space available for crystallization within

Figure 3 Comparison between the exact (solid line)
and approximate (dashed line) solutions for the volume
of intersection between a cylinder and a sphere. Three
cases are shown: (a) Rf 5 0.1, b 5 0.2; (b) Rf 5 0.3,
b 5 0.4; (c) Rf 5 0.5, b 5 0.6.
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the cell. For example, the absence of any fiber
truncation on a spherulite can occur only between
Rf 1 Rs and Ro, and as long as Rf 1 Rs , Ro.
These probabilities can be easily computed with
the aid of Figure 5.

Three time sequences are possible for the oc-
currence of the truncations. The volume fraction
is the determining factor of the time sequence for
the truncation, i.e., the time frame in which a hole
in the spherulite or a channel occur. The volume
fraction at which the various truncation se-
quences and the probabilities differ is determined
by comparing the fiber radius Rf to the polymer
gap Ro 2 Rf. A first volume fraction is at Rf 5 Ro
2 Rf or Vf 5

1
3. Another volume fraction that will

change the time sequence is at 2Rf 5 Ro 2 Rf or Vf
5

1
9. The various probabilities are shown in Tables

I, II, and III for Vf #
1
9,

1
9 # Vf #

1
3, and Vf $

1
3,

respectively.

Tables I, II, and III also show the probability of
finding spherulites that do not have any trunca-
tion. Since this probability depends on the size of
the spherulite with respect to the space between
the limit of the cell and the fiber, it is also a
function of time. The spherulites are initially very
small, which results in high probabilities of no
truncation. As the spherulites grow, the chance of
a truncation to occur increases and the chance of
no truncation decreases.

Furthermore, an entry could be made for the
occurrence of Rs . (Ro 2 Rf). This entry would
indicate at which point in time multiple fiber
truncations will start occurring. The importance
of multiple fiber truncations depends on nuclei
density with respect to the fiber volume fraction.
If nucleation is profuse and a large number of
spherulites are formed rapidly, a crystallinity
close to 1 will be reached quickly and only one
fiber truncation is expected to occur.

Figure 4 Illustration of possible unit cells that can be
used to compute probabilities of occurrence of various
truncations.

Figure 5 Areas used in computing the probability of
occurrence of each of the three possible cases for Rs

. 2 Rf.
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Modified Extended Volume for Crystallization
with No Fiber Nucleation

Calculation of the crystallinity for a restricted
volume due to fibrous reinforcements involves
replacing the free volume of the growing enti-
ties with corresponding average values of the
corrected volumes weighted by their probability
of occurrence. Calculations of the modified ex-
tended volume fractions a9(t) are presented be-
low for the case of an instantaneous heteroge-

neous nucleation process. The calculations use
the average volume expressions that corre-
spond to the different values of the spherulites
radius R(t, t) at time t, which have nucleated at
time t. The sequence of possible truncations, as
the process evolves with time, depends on the
fiber volume fraction. Expressions for the ex-
tended volume are presented below for Vf .

1
3

because it is a common parameter encountered
in composites.

Table I Summary of Possible Spherulite Sizes and the Associated Probability of Occurrence
for Various Truncations (for a Volume Fraction Smaller than 1

9
)

Spherulite Size Distance from Fiber Center Truncation Type Probability

0 , Rs , Rf Rf , b , Rf 1 Rs channel (V3
a) P1 5

Rs~Rs 1 2Rf!

Ro
2 2 Rf

2

Rf 1 Rs , b , Ro no truncation 1 2 P1

Rf Rs , 2Rf Rf , b , Rf 1 Rs channel (V2
a) P1 5

Rs~Rs 1 2Rf!

Ro
2 2 Rf

2

Rf 1 Rs , b , Ro no truncation 1 2 P1

2Rf , Rs , (Ro 2 Rf) Rf , b , Rs 2 Rf hole (V1
a) P2 5

Rs
2 2 2RfRs

Ro
2 2 Rf

2

Rs 2 Rf , b , Rf 1 Rs channel (V2
b) P3 5

4RsRf

Ro
2 2 Rf

2

Rf 1 Rs , b , Ro no truncation 1 2 P1

(Ro 2 Rf) , Rs Rf , b , Rs 2 Rf hole (V1
a) P2 5

Rs
2 2 2RfRs

Ro
2 2 Rf

2

Rs 2 Rf , b , Ro channel (V2
c ) 1 2 P2

Table II Summary of Possible Spherulite Sizes and the Associated Probability of Occurrence
for Various Truncations (for a Volume Fraction Between 1

9
and 1

3
)

Spherulite Size Distance from Fiber Center Truncation Type Probability

0 , Rs , Rf Rf , b , Rf 1 Rs channel (V3
a) P1 5

Rs~Rs 1 2Rf!

Ro
2 2 Rf

2

Rf 1 Rs , b , Ro no truncation 1 2 P1

Rf , Rs , (Ro 2 Rf) Rf , b , Rf 1 Rs channel (V2
a) P1 5

Rs~Rs 1 2Rf!

Ro
2 2 Rf

2

Rf 1 Rs , b , Ro no truncation 1 2 P1

(Ro 2 Rf) , Rs , 2Rf Rf , b , Ro channel (V2
d) 1

2Rf , Rs Rf , b , Rs 2 Rf hole (V1
a) P2 5

Rs
2 2 2RfRs

Ro
2 2 Rf

2

Rs 2 Rf , b , Ro channel (V2
c ) 1 2 P2
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Modified a*(t) for Spherulites Nucleating
at t < (Ro 2 Rf)/Go

In this case, for all t, Rs(t, t) 5 Go(t 2 t) is
smaller than (Ro 2 Rf) because Vf .

1
3. The

extended volume fraction can be written with a
Dirac delta function which is used to represent
the nucleation process, i.e., ṅ(t) 5 Nd(t), which
gives simply

a9het~t! 5 No E
0

t FS1 2
Rs~Rs 1 2Rf!

Ro
2 2 Rf

2 D 4
3 pRs

3

1
Rs~2Rf 1 Rs!

Ro
2 2 Rf

2

4
3 pRs

3~1 2 ^V3
ia&!G d~t!dt

5 No E
0

tF ~1 2 P1^V3
ia&!

4
3 pRs

3G d~t!dt

5 No

4
3 pRs

3~1 2 P1^V3
ia&! ~14!

Modified a*(t) for Spherulites Growing
at t > (Ro 2 Rf)/Go

The extended volume fraction at instants greater
than (Rf/Go) is simply given by the number of
spherulites that nucleated at an earlier time mul-
tiplied by the probability of occurrence for the
various types of truncation. No nucleation occurs
during these time intervals because we are as-
suming heterogeneous nucleation represented by
a delta function.

a9het~t! 5 No
4
3 pRs

3$1 2 ^V3
ib&%

for ~Ro 2 Rf!/Go , t , Rf/Go ~15!

a9het~t! 5 No
4
3 pRs

3$1 2 ^V2
id&%

for Rf/Go , t , 2Rf/Go ~16!

a9het~t! 5 No
4
3 pRs

3$P2~1 2 ^V1
ia&! 1 ~1 2 P2!

3 ~1 2 ^V2
ic&!% 5 No

4
3 pRs

3$1 2 ~1 2 P2!^V2
ic&

2 P2^V1
ia&% for 2Rf/Go , t , ~Ro 1 Rf!/Go ~17!

a9het~t! 5 No
4
3 pRs

3$1 2 ^V1
ib&%

for ~Ro 1 Rf!/Go , t (18)

where Rs 5 Got.

Results for Crystallization with No Fiber
Nucleation

For illustrative purposes, two examples are used
for various volume fractions. In the first example
the following parameters are used in the calcula-
tions: an isothermal growth rate of G 5 1 mm/s,
a fiber radius of Rf 5 7 mm, and a cell outside
radius of Ro 5 8.32 mm. This corresponds to a
volume fraction of Vf 5 (Rf/Ro)2 5 0.71, and a
nucleation N 5 1015 nuclei/m3 is assumed to
occur at t 5 0. The average radius of the spheru-
lites will therefore be of about 13 mm at the end of
the crystallization process. Comparison between

Table III Summary of Possible Spherulite Sizes and the Associated Probability of Occurrence for
Various Truncations (for a Volume Fraction Greater than 1

3
)

Spherulite Size Distance from Fiber Center Truncation Type Probability

0 , Rs , (Ro 2 Rf) Rf , b , Rf 1 Rs channel (V3
a) P1 5

Rs~Rs 1 2Rf!

Ro
2 2 Rf

2

Rf 1 Rs , b , Ro no truncation 1 2 P1

(Ro 2 Rf) , Rs , Rf Rf , b , Ro channel (V3
b) 1

Rf , Rs , 2Rf Rf , b , Ro channel (V2
d) 1

2Rf , Rs , (Ro 1 Rf) Rf , b , Rs 2 Rf hole (V1
a) P2 5

Rs
2 2 2RfRs

Ro
2 2 Rf

2

Rs 2 Rf , b , Ro channel (V2
c ) 1 2 P2

(Ro 1 Rf) , Rs Rf , b , Ro hole (V1
b) 1

1684 BENARD AND ADVANI



the crystallization rate in neat polymer and the
crystallization rate in a fiber-reinforced polymer
is shown in Figure 6. The crystallinity profile is
built by the evaluation of the extended volume
within a specific time frame and the overall crys-
tallization profile is obtained by assembling the
profiles to obtain a description of the process at
any time. It can also be observed that not all
functions are relevant to every time frame. For
example, eq. (14), when used to compute the ac-
tual crystallinity, gives a very small crystallinity,
near 0. On the other hand, using eq. (18) gives a
crystallinity of 1. The relevance of each equation
is related to the growth rate, the number of nu-
clei, and the volume fraction.

It can also be observed in Figure 6 that the
difference between the filled and unfilled polymer
crystallization rates is not large, though not neg-
ligible either. The cell considered allows for only
one fiber truncation per spherulite. For the vol-
ume fraction of fiber chosen in this example, dou-
ble or triple truncations could occur, reducing the
crystallization rate even more. The present treat-
ment does not allow double or triple truncations.
This effect of multiple fiber truncations will be
present in polymer systems with low nuclei
counts. Strictly speaking, there is no unit cell
large enough to model the process accurately be-
cause the spherulites grow unimpeded in the ex-
tended volume and each spherulite can grow un-
bounded. For this reason, the degree of crystallin-
ity computed with the Avrami equation will never
reach the value of 1, but will approach it in an
asymptotic manner. This is true for unfilled and
filled polymers.

A second example is presented here with G
5 1 mm/s, Rf 5 6 mm, and Ro 5 9.4 mm, which
gives a volume fraction of Vf 5 0.41, and a nu-
cleation N 5 1014 nuclei/m3 was selected. The
average radius of the spherulites at the end of the
crystallization process will therefore be about 30
mm. The construction of the crystallinity profile
can be done with the equations relevant to the
time interval considered; the resulting profile is
also shown in Figure 7.

CONCLUSIONS

This article presented an analysis that allows for
an analytical treatment of the phenomena of iso-
thermal crystallization in reinforced polymers.
The analytical model is based on the use of ap-
proximate expressions for the volume of intersec-
tion between a sphere and cylinder. The approach
consists simply of first computing the average
volumes related to the possible types of trunca-
tions that can be encountered. Once this is
known, the crystallization process is divided into
time frames during which specific types of trun-
cations are encountered. Since the radii of the
spherulites change with time, the possible types
of truncations will also change with time. Al-
though the resulting equations are somewhat
complicated, they can be computed fairly easily
with a symbolic computations package. Three dif-
ferent time sequences can be derived according to
the fiber volume fraction. Furthermore, the effect
of the fibers on the overall crystallization process
was demonstrated with simple examples. It was
also found that a larger unit cell should be used to
account for the multiple fiber truncations that can

Figure 6 Resulting crystallinity profile and compar-
ison with the unreinforced polymer (dashed line) for G
5 1 mm/s, Rf 5 7 mm, Ro 5 8.32 mm, and N 5 1015

nuclei/m3.

Figure 7 Resulting crystallinity profile and compar-
ison with the unreinforced polymer (dashed line).
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occur near the end of the crystallization process,
when large spherulites are encountered combined
with a high fiber volume fraction.

APPENDIX: AVERAGE VOLUME
EXPRESSIONS

The average volumes required to compute the
extended volume fractions are provided below.
Eight expressions are required because the inter-
vals for the integration vary. The subscripts 1a,
1b, 2a, 2b, 2c, 2d, 3a, and 3b are used to distin-
guish the possible cases.

^V1a
i & 5

2
Rs~Rs 2 2Rf! E

Rf

Rf 2 Rs

V1
i bdb

5
2p

Rs 2 2Rf
F2

1
3 SRf~2Rs 2 Rf!

Rs
2 D 3/2

3 FRs
2 1 Î1 2

Rf
2

Rs
2 ~Rf

2 2 Rs
2!G

1

~Rf
2 2 Rs

2!3 1 Î1 2
Rf

2

Rs
2 Rs

4~Rs
2 2 Rf

2!

3Rs
4 ~A.1)

^V1b
i & 5

2
~Ro

2 2 Rf
2! E

Rf

Ro

V1
i bdb

5

2S ~Rf
2 2 Rs

2!3

Rs
4 1 Î1 2

Rf
2

Rs
2 ~Rs

2 2 Rf
2!

1 SS1 2
Rf

2

Rs
2D 3/2

2 1D
3 Î1 2

Ro
2

Rs
2 ~Rs

2 2 Ro
2!D

3~Ro
2 2 Rf

2!
(A.2)

^V2a
i & 5

2
Rs~2Rf 1 Rs! E

Rf

Rs 1 Rf

V2
i bdb

5

ÎRf~2Rs 2 Rf!

Rs
2 Rs~5Rf 1 Rs!

3 FRs
2 1 Î1 2

Rf
2

Rs
2 ~Rf

2 2 Rs
2!G

1
Rf

5/2~40Rf
2 2 5RfRs 2 3Rs

2!

ÎRf 1 Rs

80Rf
3~2Rf 1 Rs!

(A.3)

^V2b
i & 5

1
2RsRf

E
Rs 2 Rf

Rs 1 Rf

V2
i bdb

5

SRf~5Rs 2 3Rf!ÎRf~2Rs 2 Rf!

Rs
2

3 FRs
2 1 Î1 2

Rf
2

Rs
2 ~Rf

2 2 Rs
2!G

2
Rf

7/2~Rf 2 5Rs!

ÎRf 1 Rs
D

20Rf Rs
3 ~A.4)

^V2c
i & 5

2
~Ro

2 2 ~Rf 2 Rs!
2! E

Rs 2 Rf

Ro

V2
i bdb

5 Î2
Rf ~Rf 2 2Rs!

Rs
2 @49Rf

5 2 75Rf
4Rs

2 10Rf
3~Ro

2 2 Rs
2!

1 10Rf
2~Ro 2 Rs!

2~2Ro 1 Rs!

2 5Rf ~Ro 2 Rs!
3~3Ro 1 Rs!

1 ~Ro 2 Rs!
4~4Ro 1 Rs!#

3 31 1

Î1 2
Rf

2

Rs
2 ~Rf 2 Rs!

Rs
2

1

Rf
5/2~Rf 1 Ro 2 Rs!

2Î 1
Rf 1 Rs

Rs
2

3 ~23Rf
3 2 3~Ro 2 Rs!

2~4Ro 1 Rs!

2 Rf
2~46Ro 1 9Rs!

1 Rf ~Ro 2 Rs!~39Ro 1 11Rs!!4 /

$160Rf
3~~Rf 2 Rs!

2 2 Ro
2!% ~A.5)

^V2d
i & 5

2
~Ro

2 2 Rf
2! E

Rf

Ro

V2
i bdb

5
A~Rs

3 2 Î~Rs
2 2 Rf

2!~Rs
2 2 Rf

2!!

80Rf
3Rs

4~Rf 1 Ro!

1 B@~7Rf
4 1 Rf

3~7Ro 1 25Rs!!#

1 B@Rf
2~223Ro

2 1 25RoRs 1 30Rs
2!

1 3Ro~4Ro
3 2 15Ro

2Rs 1 20RoRs
2 2 10Rs

3!#

2 BRf ~3Ro
3 1 5Ro

2Rs

2 30RoRs
2 1 30Rs

3) (A.6)
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where

A 5 Î~Rf ~2Rs 2 Rf!!$~Rf 2 Ro!
3~Rf 1 4Ro!

1 5~Rf 2 Ro!
2~Rf 1 3Ro!Rs 1 10~Rf 2 Ro!

3 ~Rf 1 2Ro!Rs
2 1 10~Rf 1 Ro!Rs

3% (A.7)

B 5

Î 1
Rf 1 Rs

80ÎRfRs
2~Rf 1 Ro!

(A.8)

^V3a
i & 5

2
Rs~2Rf 1 Rs! E

Rf

Rs 1 Rf

V3
i bdb

5

5Rf 1 Rs 1 Î Rf

Rf 1 Rs)
~25Rf 1 7Rs!

80~2Rf 1 Rs!
(A.9)

^V3b
i & 5

2
~Ro

2 2 Rf
2! E

Rf

Ro

V3
i bdb

5

10~Rf 2 Ro!~Rf 1 2Ro!Rs
2S1 1 Î Rf

Rf 1 Rs~t!
D

2 5~Rf 2 Ro!
2~Rf 1 3Ro!RsS21 1 Î Rf

Rf 1 Rs
D

80~Rf 1 Ro!Rs
3

1

10~Rf 1 Ro!Rs
3S1 1 3Î Rf

Rf 1 Rs
D

2 ~Rf 2 Ro!
3~Rf 1 4Ro!S21 1 3Î Rf

Rf 1 Rs
D

80~Rf 1 Ro!Rs
3

(A.10)

^V1
i &, ^V2

i &, and ^V3
i & are all normalized with re-

spect to (4
3)pRs

3.

REFERENCES

1. N. Billon, J. M. Escleine, and J. M. Haudin, Colloid
Polym. Sci., 267, 668 (1989).

2. J. M. Haudin and N. Billon, Prog. Colloid Polym.
Sci., 87, 132 (1992).

3. N. Billon, C. Magnet, J. M. Haudin, and D. Lefeb-
vre, Colloid Polym. Sci., 272, 633 (1994).

4. J. M. Schultz, Macromolecules, 29, 3022, (1996).
5. N. A. Mehl and L. Rebenfeld, J. Polym. Sci., Part B:

Polym. Phys. Ed., 31, 1677 (1993).
6. N. A. Mehl and L. Rebenfeld, J. Polym. Sci., Part B:

Polym. Phys. Ed., 31, 1687 (1993).
7. T. Krause, G. Kalinka, C. Auer, and G. Hinrichsen,

J. Appl. Polym. Sci., 51, 399 (1994).
8. N. A. Mehl and L. Rebenfeld, J. Polym. Sci., Part B:

Polym. Phys. Ed., 33, 1249 (1995).
9. J. M. Escleine, B. Monasse, E. Wey, and J. M.

Haudin, Colloid Polym. Sci., 262, 366 (1984).
10. U. R. Evans, Trans. Faraday Soc., 41, 365 (1945).
11. M. Avrami, J. Chem. Phys., 7, 1103 (1939).
12. M. Avrami, J. Chem. Phys., 8, 212 (1940).
13. M. Avrami, J. Chem. Phys., 9, 177 (1941).
14. J. Schultz, Polymer Materials Science, Prentice-

Hall, Englewood Cliffs, NJ, 1974.
15. B. Wunderlich, Macromolecular Physics, Vol. 2, Ac-

ademic Press, New York, 1976.
16. F. Lamarche and C. Leroy, Computer Phys. Com-

mun., 59, 359 (1990).
17. J. Gosset, H. H. Gutbrod, W. G. Meyer, A. M. Pos-

kanzer, A. Sandoval, R. Stock, and G. D. Westfall,
Phys. Rev. C, 16(2), 629 (1977).

FIBER-REINFORCED POLYMERS 1687


